Qt5 Signal Slot Lambda

Posted on  by admin

We removed one slot through a lambda function; We got to track errors already at compile time, rather than runtime than the sin signal macros and slots; Led code to Qt5 standard. But this code looks quite scary, because it is used for staticcast QSignalMapper signals and slots. Signals and slots are used for communication between objects. The signals and slots mechanism is a central feature of Qt and probably the part that differs most from the features provided by other frameworks. The minimal example requires a class with one signal, one slot and one connection: counter.h.

  1. Qt5 Signal Slot Lambda Alpha
  2. Qt Signal Slot Lambda
  3. Qt5 Signal Slot Lambda Python

Connecting in Qt 5. There are several ways to connect a signal in Qt 5. Qt 5 continues to support the old string-based syntax for connecting signals and slots defined in a QObject or any class that inherits from QObject (including QWidget).

This page describes the use of signals and slots in Qt for Python.The emphasis is on illustrating the use of so-called new-style signals and slots, although the traditional syntax is also given as a reference.

The main goal of this new-style is to provide a more Pythonic syntax to Python programmers.

  • 2New syntax: Signal() and Slot()

Traditional syntax: SIGNAL () and SLOT()

QtCore.SIGNAL() and QtCore.SLOT() macros allow Python to interface with Qt signal and slot delivery mechanisms.This is the old way of using signals and slots.

The example below uses the well known clicked signal from a QPushButton.The connect method has a non python-friendly syntax.It is necessary to inform the object, its signal (via macro) and a slot to be connected to.

New syntax: Signal() and Slot()

The new-style uses a different syntax to create and to connect signals and slots.The previous example could be rewritten as:

Using QtCore.Signal()

Signals can be defined using the QtCore.Signal() class.Python types and C types can be passed as parameters to it.If you need to overload it just pass the types as tuples or lists.

In addition to that, it can receive also a named argument name that defines the signal name.If nothing is passed as name then the new signal will have the same name as the variable that it is being assigned to.

The Examples section below has a collection of examples on the use of QtCore.Signal().

Note: Signals should be defined only within classes inheriting from QObject.This way the signal information is added to the class QMetaObject structure.

Using QtCore.Slot()

Slots are assigned and overloaded using the decorator QtCore.Slot().Again, to define a signature just pass the types like the QtCore.Signal() class.Unlike the Signal() class, to overload a function, you don't pass every variation as tuple or list.Instead, you have to define a new decorator for every different signature.The examples section below will make it clearer.

Another difference is about its keywords.Slot() accepts a name and a result.The result keyword defines the type that will be returned and can be a C or Python type.name behaves the same way as in Signal().If nothing is passed as name then the new slot will have the same name as the function that is being decorated.

Examples

The examples below illustrate how to define and connect signals and slots in PySide2.Both basic connections and more complex examples are given.

  • Hello World example: the basic example, showing how to connect a signal to a slot without any parameters.
  • Next, some arguments are added. This is a modified Hello World version. Some arguments are added to the slot and a new signal is created.

Qt5 Signal Slot Lambda Alpha

  • Add some overloads. A small modification of the previous example, now with overloaded decorators.
  • An example with slot overloads and more complicated signal connections and emissions (note that when passing arguments to a signal you use '[]'):
  • An example of an object method emitting a signal:
  • An example of a signal emitted from another QThread:
  • Signals are runtime objects owned by instances, they are not class attributes:
Retrieved from 'https://wiki.qt.io/index.php?title=Qt_for_Python_Signals_and_Slots&oldid=35927'

Qt5 alpha has been released. One of the features which I have been working on is a new syntax for signals and slot.This blog entry will present it.

Qt5 signal slot lambda alpha

Here is how you would connect a signal to a slot:

What really happens behind the scenes is that the SIGNAL and SLOT macros will convert their argument to a string. Then QObject::connect() will compare those strings with the introspection data collected by the moc tool.

What's the problem with this syntax?

While working fine in general, we can identify some issues:

  • No compile time check: All the checks are done at run-time by parsing the strings. That means if you do a typo in the name of the signal or the slot, it will compile but the connection will not be made, and you will only notice a warning in the standard output.
  • Since it operates on the strings, the type names of the slot must match exactly the ones of the signal. And they also need to be the same in the header and in the connect statement. This means it won't work nicely if you want to use typedef or namespaces

In the upcoming Qt5, an alternative syntax exist. The former syntax will still work. But you can now also use this new way of connecting your signals to your slots:

Which one is the more beautiful is a matter of taste. One can quickly get used to the new syntax.

So apart from the aesthetic point of view, let us go over some of the things that it brings us:

Compile-time checking

You will get a compiler error if you misspelled the signal or slot name, or if the arguments of your slot do not match those from the signal.
This might save you some time while you are doing some re-factoring and change the name or arguments of signals or slots.

An effort has been made, using static_assert to get nice compile errors if the arguments do not match or of you miss a Q_OBJECT

Arguments automatic type conversion

Not only you can now use typedef or namespaces properly, but you can also connect signalsto slots that take arguments of different types if an implicit conversion is possible

In the following example, we connect a signal that has a QString as a parameter to a slot that takes a QVariant. It works because QVariant has an implicit constructor that takes a QString

Connecting to any function

As you might have seen in the previous example, the slot was just declared as publicand not as slot. Qt will indeed call directly the function pointer of the slot, andwill not need moc introspection anymore. (It still needs it for the signal)

But what we can also do is connecting to any function or functor:

This can become very powerful when you associate that with boost or tr1::bind.

Qt Signal Slot Lambda

C++11 lambda expressions

Slot

Everything documented here works with the plain old C++98. But if you use compiler that supportsC++11, I really recommend you to use some of the language's new features.Lambda expressions are supportedby at least MSVC 2010, GCC 4.5, clang 3.1. For the last two, you need to pass -std=c++0x asa flag.

You can then write code like:

This allows you to write asynchronous code very easily.

Update: Also have a look what other C++11 features Qt5 offers.

Qt5 Signal Slot Lambda Python

It is time to try it out. Check out the alpha and start playing. Don't hesistate to report bugs.